Total variation versus wavelet-based methods for image denoising in fluorescence lifetime imaging microscopy.
نویسندگان
چکیده
We report the first application of wavelet-based denoising (noise removal) methods to time-domain box-car fluorescence lifetime imaging microscopy (FLIM) images and compare the results to novel total variation (TV) denoising methods. Methods were tested first on artificial images and then applied to low-light live-cell images. Relative to undenoised images, TV methods could improve lifetime precision up to 10-fold in artificial images, while preserving the overall accuracy of lifetime and amplitude values of a single-exponential decay model and improving local lifetime fitting in live-cell images. Wavelet-based methods were at least 4-fold faster than TV methods, but could introduce significant inaccuracies in recovered lifetime values. The denoising methods discussed can potentially enhance a variety of FLIM applications, including live-cell, in vivo animal, or endoscopic imaging studies, especially under challenging imaging conditions such as low-light or fast video-rate imaging.
منابع مشابه
Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملEnhancing precision in time-domain fluorescence lifetime imaging.
In biological applications of fluorescence lifetime imaging, low signals from samples can be a challenge, causing poor lifetime precision. We demonstrate how optimal signal gating (a method applied to the temporal dimension of a lifetime image) and novel total variation denoising models (a method applied to the spatial dimension of a lifetime image) can be used in time-domain fluorescence lifet...
متن کاملImage analysis for denoising full-field frequency-domain fluorescence lifetime images.
Video-rate fluorescence lifetime-resolved imaging microscopy (FLIM) is a quantitative imaging technique for measuring dynamic processes in biological specimens. FLIM offers valuable information in addition to simple fluorescence intensity imaging; for instance, the fluorescence lifetime is sensitive to the microenvironment of the fluorophore allowing reliable differentiation between concentrati...
متن کاملAn Improvement of Steerable Pyramid Denoising Method
The use of wavelets in denoising, seems to be an advantage in representing well the details. However, the edges are not so well preserved. Total variation technique has advantages over simple denoising techniques such as linear smoothing or median filtering, which reduce noise, but at the same time smooth away edges to a greater or lesser degree. In this paper, an efficient denoising method bas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biophotonics
دوره 5 5-6 شماره
صفحات -
تاریخ انتشار 2012